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Abstract—The ACII Affective Vocal Bursts Workshop & Com-
petition is focused on understanding multiple affective dimensions
of vocal bursts: laughs, gasps, cries, screams, and many other
non-linguistic vocalizations that are central to the expression
of emotion and to human communication more generally. This
year’s competition comprises four tracks using a large-scale and
in-the-wild dataset of 59,299 vocalizations from 1,702 speakers.
The first, the A-VB-HIGH task, requires competition participants
to perform a multi-label regression on a novel model for emotion,
utilizing ten classes of richly annotated emotional expression
intensities including; Awe, Fear, and Surprise. The second, the
A-VB-TWO task, utilizes the more conventional 2-dimensional
model for emotion, arousal, and valence. The third, the A-
VB-CULTURE task, requires participants to explore the cultural
aspects of the dataset, training native-country dependent models.
Finally, for the fourth task, A-VB-TYPE, participants should
recognize the type of vocal burst (e. g., laughter, cry, grunt) as
an 8-class classification. This paper describes the four tracks in
detail and provides performance measures for baseline models
using state-of-the-art machine learning methods. The baseline
performance for each sub-challenge is obtained by utilizing an
end-to-end deep learning model and is as follows: for A-VB-
HIGH, a mean (over the 10-dimensions) Concordance Correlation
Coefficient (CCC) of 0.5687 CCC; for A-VB-TWO, a mean
(over the 2-dimensions) CCC of 0.5084 is obtained; for A-VB-
CULTURE, a mean CCC from the four cultures of 0.4401 is
obtained; and for A-VB-TYPE, the baseline Unweighted Average
Recall (UAR) from the 8-classes is 0.4172 UAR.

Index Terms—affective computing, vocal bursts, emotional
expression, multi-label, machine learning

I. INTRODUCTION

The Affective-Vocal Burst (A-VB ) competition is explor-
ing the expression of affect and emotion in brief nonverbal
vocalizations (e. g., vocal bursts such as laughs, sighs, and
shouts). Within this competition, the organizers provide several
emotion modeling strategies, and aim to discuss each during
the workshop held at the 2022 Affective Computing and
Intelligent Interactions (ACII) Conference.

Thus far, vocal bursts have largely been overlooked in the
fields of machine learning, affective computing, and emotion
science more generally. Given the focus in these fields on
facial expressions, the voice has been a relatively understudied
medium for communicating emotion. To the extent that the
voice has been studied as a modality of emotion expression, it
has mostly been understood from the perspective of speech

prosody [1]. But another way that humans communicate
emotion with the voice is with the brief sounds that occur
in the absence of speech – laughs, cries, and shouts (to name
a few). Recent studies have sought to document the range of
emotions conveyed by vocal bursts (known as affect bursts [2],
[3]), with findings demonstrating that over 10 emotions are
reliably conveyed by brief vocalizations, and that the meanings
of vocal bursts are largely preserved across diverse cultures [4],
[5].

The field of machine learning has recently seen increased
interest into vocal bursts as well, with the Expressive Vo-
calizations (ExVo) competition at ICML in 2022 [6] being
the first of its kind competition to explore various machine
learning methods to model and generate vocal bursts. More
broadly, computational speech-based emotion modeling has
become a prevalent area of research in the speech domain
since the rise of computational paralinguistics [7] and general
advances in machine and deep learning speech recognition
strategies [8]. Computational modeling of emotion has promise
to inform a wide range of domains pertaining to human
wellbeing, with applications including diagnostic tools for
psychiatric illnesses [9], and bio-markers for remote wellness
monitoring [10].

In the A-VB competition, we extend on our recent
works [6], with a more specific focus on comparing and
contrasting the various strategies available for modeling emo-
tion in vocal bursts. In particular, the A-VB competition
presents four sub-challenges utilizing a single dataset: (1) the
high-dimensional emotion task (A-VB-HIGH), in which par-
ticipants must predict a high-dimensional (10 class) emo-
tion space, as a multi-output regression task, (2) the two-
dimensional emotion task (A-VB-TWO), where the two-
dimensional emotion space based on the circumplex model of
affect [11] (arousal and valance) is to be recognized, again as
a multi-output regression task, (3) the cross-cultural emotion
task (A-VB-CULTURE), where participants will be challenged
with predicting the intensity of 10 emotions associated with
each vocal burst as a multi-output regression task, using a
model or multiple models that generate predictions specific to
each of the four cultures provided in the dataset (the U.S.,
China, Venezuela, or South Africa), and (4) the expressive
burst-type task (A-VB-TYPE), in which participants are chal-
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lenged with classifying the type of expressive vocal burst
from 8-classes (Cry, Gasp, Groan, Grunt, Laugh, Other, Pant,
Scream).

The dataset used within the A-VB competition, the Hume
Vocal Bursts dataset (HUME-VB), comprises 59,201 record-
ings totaling more than 36 hours of audio data from 1,702
speakers. First utilized in the A-VB competition [6], to our
knowledge, this dataset remains one of the largest available of
human vocal bursts. The recordings in HUME-VB are rich and
diverse in a number of ways that present unique opportunities,
with the labeling enabling an array of emotion characteristics
to be explored from vocal bursts. A single vocal burst can
combine classes such as gasps infused with a cry, or a scream
which ends with a laugh and offer a vibrant testing bed for
emotion understanding and modeling [5]. Thus, the HUME-
VB dataset enables distinct, but complementary strategies:
allowing participants to model continuous blends of utterances
such as laughs, cries, and gasps as well as the distinct
meanings of different laughs (amusement, awkwardness, and
triumph), cries (distress, horror, and sadness), gasps (awe,
excitement, fear, and surprise), and more.

In this paper, we include a description of the HUME-
VB dataset in detail (Section II), provide rules for the four
competition tasks (Section III), and present baseline results
for each task (Section IV). We summarize our results in
Section V and conclude with a discussion of insights from
baseline development in Section VI.

II. THE A-VB DATA

The HUME-VB dataset consists of 1,764 speakers combin-
ing more than 36 hours of audio, recorded in realistic envi-
ronments. The speakers are non-actors from four cultures: the
U.S., China, Venezuela, and South Africa, and are performing
emotional mimicry of seed emotion examples.

The A-VB competition relies on the HUME-VB dataset,
a large-scale dataset of emotional non-linguistic vocaliza-
tions (vocal bursts). This dataset consists of 36 :47 :04
(HH :MM :SS) of total audio data from 1 702 speakers, aged
from 20 to 39 years old. The data was gathered in 4 countries
as outlined, with broadly differing cultures: China, South
Africa, the U.S., and Venezuela. Furthermore, the data was
collected in speakers’ homes via their own microphones (con-
sisting of uncontrolled and realistic variations in recording
conditions).

Each vocal burst has been labeled in terms of the inten-
sity of 10 different expressed emotions, each on a [1 :100]
scale, and these are averaged over an average of 85.2 raters’
responses, Amusement, Awe, Awkwardness, Distress, Excite-
ment, Fear, Horror, Sadness, Surprise, and Triumph.

In Figure 1, the distribution of emotional expressions, based
on the human ratings across the training set is visualized using
t-SNE. We can see that the expressions vary continuously,
with clearly defined regions corresponding to each expressed
emotion as well as continuous gradients between emotions
(e. g., amusement and excitement). Of note, there are fewer

TABLE I
AN OVERVIEW OF THE HUME-VB DATA. INCLUDING (NO.) SAMPLES,

DURATION (HH: MM: SS), SPEAKERS, COUNTRY-OF-ORIGIN, AND
VOCALIZATION TYPE. THE AGE RANGE FOR SPEAKERS IS 20.5:39.5
YEARS. FOR THE PURPOSES OF THE COMPETITION, THE TEST SET IS

BLINDED.

Train Val. Test
∑

HH: MM: SS 12 :19 :06 12 :05 :45 12 :22 :12 36 :47 :04
No. 19 990 19 396 19 815 59 201

Speakers 571 568 563 1 702

USA 206 206 — —
China 79 76 — —
South Africa 244 244 — —
Venezuela 42 42 — —

Cry 1,845 1834 — —
Gasp 7,104 6844 — —
Groan 1357 1251 — —
Grunt 1,348 1322 — —
Laugh 4,940 4730 — —
Pant 421 421 — —
Other 1366 1393 — —
Scream 1,573 1590 — —

samples that convey Triumph, so we expect this class to be
more challenging to model.

The intensity ratings for each emotion were normalized to
range from [0 :1]. For our baseline experiments, the audio files
were normalized to -3 decibels and converted to 16 kHz, 16 bit,
mono (we also provide participants with the raw unprocessed
audio, which was captured at 48 kHz). No other processing
was applied to the files. Thus, data processing strategies for
speech enhancement may be beneficial. The data was sub-
sequently partitioned into training, validation, and test splits,
considering speaker independence and balance across classes
of interest. In Table I, we tabulate the number of samples and
speakers by native-country and gender for each split.

III. THE COMPETITION TASKS

In the A-VB competition, we present four tasks of varying
nature utilizing the HUME-VBdata. Each explores a different
aspect of the affective samples, with our aim to understand
more deeply the various strategies for modeling emotion in
vocalizations – an on-going area of research for machine
learning. In Figure 1, aspects of data in relation to three of
the tasks is shown to offer more insight.

A. A-VB High

In the High-Dimensional Emotion Sub-Challenge (A-VB-
HIGH), participants are challenged with predicting the in-
tensity of 10 emotions (Awe, Awkwardness, Amusement,
Distress, Excitement, Fear, Horror, Sadness, Surprise, and
Triumph) associated with each vocal burst as a multi-output
regression task. Participants will report the mean Concordance
Correlation Coefficient (CCC), across all 10 emotions.

B. A-VB Two

In the Two-Dimensional Sub-Challenge (A-VB-TWO), par-
ticipants predict values of arousal and valence (based on 1=un-
pleasant/subdued, 5=neutral, 9=pleasant/stimulated), derived
from the circumplex model for affect [12] as a regression
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Fig. 1. t-SNE representation of the emotional expression (left), the arousal and valance distribution (middle), as well as a t-SNE representation of the
culture-based emotion labels (right), from the HUME-VB training set.

task. Participants will report the mean CCC, across the two
dimensions.

C. A-VB Culture

The Cross-Cultural High-Dimensional Emotion Sub-
Challenge (A-VB-CULTURE) is a 10-dimensional, 4-country
culture-specific emotion intensity regression task. In the A-
VB-CULTURE sub-challenge, participants will be challenged
with predicting the intensity of 40 emotions (10 from each
culture) associated with each vocal burst as a multi-output
regression task, using a model or multiple models that gen-
erate predictions specific to each of four cultures (the U.S.,
China, Venezuela, or South Africa). Specifically, the label for
each vocal burst consists of a culture-specific gold standard,
meaning that the ground truth for each sample will be the
average of annotations solely from the country of origin for
the sample. Participants will report the mean CCC across all
40 emotions.

D. A-VB Type

In the Expressive Burst-Type Sub-Challenge (A-VB-
TYPE), participants are challenged with classifying the type
of expressive vocal burst from 8 classes (Gasp, Laugh, Cry,
Scream, Grunt, Groan, Pant, Other). Participants will report the
Unweighted Average Recall (UAR) as a measure of accuracy.

E. General Guidelines

To participate in the A-VB 2022 competition, all partici-
pants are asked to provide a completed copy of the HUME-
VBEnd-User License Agreement (EULA) (more details can be
found on the competition homepage1). In addition, participants
should submit a paper describing their methods and results that
meets the official ACII guidelines. (The A-VB workshop is
also accepting contributions on related topics.) To obtain test
scores, participants should submit their test set predictions to
the competition organizers (each team can do this up to 5
times). Participants are free to compete in any or all of the
tasks, and are encouraged to explore combinations.

1http://competitions.hume.ai/avb2022

IV. BASELINE EXPERIMENTS

For each sub-challenge of the A-VB competition, we
provide a baseline system utilizing well-established methods
known in audio-based emotion recognition modeling [13]–
[15]. We provide reproducible code supporting each baseline
system on GitHub2.

A. Feature-based Approach

We extract two sets of features that have been suc-
cessfully deployed for related tasks [16]–[18]. One fea-
ture vector is extracted per sample for each feature set.
Using the OPENSMILE toolkit [19], we extracted the
6,373-dimensional COMPARE set and the 88-dimensional
EGEMAPS set. The 2016 COMputational PARalinguistics
ChallengE (COMPARE) [20] set contains 6,373 static features
computed based on functionals from low-level descriptors
(LLDs) [16], [21]. The extended Geneva Minimalistic Acous-
tic Parameter Set (EGEMAPS) [14], which is smaller in size
(88-dimensions), was designed for affective-based computa-
tional paralinguistic tasks.

1) Model Architecture: For the feature-based experiments
we apply a standard neural-network which consists of three
fully-connected layers, with layer normalization between each,
and a leaky rectified linear unit (Leaky ReLU) as the activation
function. For the regression experiments, sigmoid is applied
on the output layer. The loss for each task is also varied, with
multi-label emotion experiments utilizing a combined Mean
Square Error (MSE) loss, and the classification tasks applying
cross-entropy loss which includes softmax on the output layer.
From several experiments for each task, a global learning rate
(lr) and batch size (bs) is chosen of lr = 10−3 and bs = 8.
We also apply early stopping (patience of 5 epochs) to avoid
the effects of overfitting the model, and a maximum of 25
epochs.

B. End-to-End Approach

For our end-to-end baseline, we use the multimodal profiling
toolkit END2YOU [15]. The baseline model is comprised of
a convolutional neural network (CNN) that extracts features

2http://github.com/HumeAI/competitions/tree/main/A-VB2022
(Available shortly.)
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TABLE II
BASELINE SCORES FOR A-VB 2022. REPORTING THE MEAN CONCORDANCE CORRELATION COEFFICIENT (CCC) FOR THE THREE REGRESSION TASKS,

AND THE UNWEIGHTED AVERAGE RECALL (UAR) ACROSS THE 8-CLASSES (CHANCE LEVEL .125) FOR A-VB-TYPE. THE BEST SCORE ON TEST IS
EMPHASIZED AS THE OFFICIAL BASELINE FOR EACH TASK. WE REPORT THE BEST SCORES FROM 5 SEEDS.

Approach CCC UAR
A-VB-HIGH A-VB-TWO A-VB-CULTURE A-VB-TYPE
Val. Test Val. Test Val. Test Val. Test

COMPARE .5154 .5214 .4942 .4986 .3867 .3887 .3913 .3839
EGEMAPS .4484 .4496 .4114 .4143 .3229 .3214 .3608 .3546

END2YOU .5638 .5686 .4988 .5084 .4359 .4401 .4166 .4172
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Fig. 2. Normalized confusion matrix for validation results of A-VB-TYPE,
with EGEMAPS (left) and END2YOU (right) approaches.

from each audio frame, and a recurrent neural network (RNN)
that extracts temporal features. We use the Emo-18 (CNN)
network architecture [22], which is comprised of three cascade
blocks of 1-D CNN layers, a Leaky ReLU activation function
(α = 0.1), and max-pooling operations. Both convolution and
pooling operations are performed in the time domain, using
the raw waveform as input. We exploit temporal patterns in
the signals using a 2-layer Long-Short Term Memory (LSTM)
network, before the final emotion prediction.

The input audio frame passed to the CNN is 0.1 sec long,
which corresponds to a 1 600 dimensional vector, correspond-
ing to the audio sampling rate of 16 kHz. Audio signals with a
length not divisible by the input length are padded with zeros.

Our model is trained utilizing the Adam optimization algo-
rithm [23] with a batch size of 8 and an initial learning rate
of 10−4. The weights of the network have been initialized
with Kaiming uniform [24] initialization, and the biases are
initially set to zero. The LSTM network is comprised of 256
hidden units, and is trained with a gradient norm clipping of
5.0. Finally, for the regression tasks, we use the MSE loss
function and the CCC evaluation metric. For the classification
task we use the cross-entropy loss with UAR as the evaluation
metric.

V. DISCUSSION OF COMPETITION BASELINES

In Table II, we provide the baseline results for each of the
four sub-challenges of the A-VB competition. In all cases, the
baseline score is set by the end-to-end approach END2YOU,
with feature-based strategies falling short in all cases.

For the A-VB-HIGH task, a baseline on the test set of
0.5687 CCC is obtained utilizing the end-to-end, END2YOU

method. Of interest here, we see the COMPARE features
closely following much better than EGEMAPS. This suggest-
ing that the prosodic- and spectral-based features included with
the COMPARE set may be benefiting this task. On the other
hand, the limited samples available may also be restricting the
potential performance possible from the END2YOU method.

We see similar results for A-VB-TWO, with a baseline on
the test set of 0.5084 CCC obtained for the mean across the
two classes, arousal and valance. Of interest, we find that
the score for valance is higher than for arousal, 0.5701 and
0.4468 CCC, respectively. Typically, within speech emotion
recognition tasks, arousal would be easier to model than
valance [25]. However, we consider that given that this data is
non-language based, and arousal is known to correlate highly
with traits including speech-rate [26], and volume [27], arousal
may be more of a challenge in this context, as these samples
are largely single bursts, and volume may be less impacting
on perception of arousal given the ‘in-the-wild’ nature of the
recordings.

As with A-VB-HIGH and A-VB-TWO, the baseline is set
by the END2YOU approach for A-VB-CULTURE, with a CCC
of 0.4401 CCC on the test set. Given the multi-cultural nature
of this task, the overall CCC is lower than the others, as some
cultures are more difficult to model. Particularly, this is true for
the case for Venezuela (a mean of 0.3888 CCC), possibly due
to the the sample size being lower for this culture, as well as
China (a mean of 0.3870 CCC), possibly due to a combination
of low sample size and a stronger cultural difference in these
samples.

For the A-VB-TYPE task, we explore classification for the
first time with this data, classifying 8-classes of vocalization
type. Once again, the END2YOU approach is set as the
baseline (0.4172 UAR on the test set), with a similar margin
to the hand-crafted feature-based approaches. In Figure 2,
we can see the confusion matrix for the test results of the
baseline system and the EGEMAPS approach. Of interest,
when looking at each class, the most commonly confused
class appears to be ‘Gasp’ in both case. The class imbalance
may be a cause for this given that the ‘Gasp’ class is the
most dominant class (7,104 samples vs. 4,940 for ‘Laugh’, the
next largest class in the training set). Furthermore, we see that
the hand-crafted features do perform better for some classes,
particularly ‘Screaming’ in the case of EGEMAPS; this may
indicate that the speech-based features are still valuable for
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this task, further supported by there strong performance across
other tasks.

VI. CONCLUDING REMARKS

With this contribution, we introduced the guidelines and
baseline results for the first ACII Affective Vocal Bursts (A-
VB ) competition. The competition focuses on understanding
strategies for computationally modeling emotion in vocal
bursts, utilizing a large-scale and ‘in-the-wild’ dataset, the
HUME-VB corpus. In this year’s competition, four tasks were
introduced: (1) A-VB-HIGH, a multi-label regression task
utilizing 10 dimensions of emotion, we report a baseline score
of 0.5686 CCC for A-VB-HIGH; (2) A-VB-TWO, model
ling the two-dimensions of arousal and valance, we report,
a mean CCC of 0.5084 for A-VB-TWO; (3) in which
participants should model 40-dimensions, 10 for each culture
in the dataset, we report a baseline score of 0.4401 CCC
for A-VB-CULTURE; and (4) A-VB-TYPE, a classification
task, classifying 8-classes of vocalization type, we report a
baselines score of 0.4172 UAR for A-VB-TYPE. There are
several aspects which can be explored by participants of the
A-VB competition to improve on the provided baselines.
Namely, for example, exploring the advantages of jointly
learning from the various labeling provided by participants,
as well as knowledge-based approaches targeted at fully har-
nessing the diversity present across the HUME-VB dataset.
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